Black carbon radiative forcing in south Mexico City, 2015

Xóchitl Cruz Núñez

Atmósfera | Vol 32, No 3

Autores: Xochitl Cruz Núñez*

* Departamento de Ciencias Atmosféricas | Cambio Climático y Radiación Solar

Abstract

B

lack carbon (BC) is a strong radiative forcer. Because of its multiple effects on climate change, BC has been located as the second important impact factor of climate change only after carbon dioxide. Sources of BC include mainly diesel vehicles and biomass burning. Mexico’s pledges before the Paris Agreement are, between others, the reduction of BC emissions to up to 51% by 2030 compared with those in 2000. In order to know the exact contribution of BC to the emission inventory of Mexico it is necessary to estimate several BC properties, such as its radiative forcing and its effects on the radiative heating of the atmosphere, among others. In this work, a technique based on the available remote-sensing and ground-based data along with the Optical Properties of Aerosols and Clouds (OPAC) and the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) algorithms were used to estimate black carbon radiative forcing in the south of Mexico City during 2015. Land-based measurements were taken from a recently created monitoring network, the Aerosol Robotic Network (AERONET), and satellite measurements were obtained from the Moderate Resolution Imaging Spectroradiometer) (MODIS). Black carbon monthly concentrations along 2015 were between 1.9 and 4.1 μg/m3 . Results show that monthly average radiative forcing on the top of the atmosphere 168 X. Cruz Núñez over south Mexico City during 2015 was +30.2 ± 6.2 W/m2 . November, December and January presented the highest radiative forcing values (+34.9, +46.9, +34.0, respectively). In addition, estimates of atmospheric heating show an average annual value of 0.85 ± 0.22 W/m2 . Values of Ångström > 1, as obtained in this work, indicate that aerosols are of the urban type and freshly emitted. Also, low single scattering albedo values in increasing wavelengths show that aerosols are mainly from urban-industrial aerosols.